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Abstract—This paper presents a novel Convolutional Neural 
Network (CNN) semantic segmentation architecture for detecting 
water leakage defects in house images. Recent semantic 
segmentation architectures have predominantly focused on RGB 
images, where water leakage traces are often vague and surface 
features insufficiently distinct. Traditional semantic segmentation 
architectures exhibit insufficient edge clarity. 

These challenges have spurred the proposal of an enhanced 
model for multispectral image segmentation. To benchmark our 
approach, we established an RGB thermal dataset and devised a 
new fused image attention module to better extract features. Our 
findings indicate a significant improvement in segmentation 
accuracy by incorporating thermal infrared information. 

Keywords-Semantic Segmentation, Information Fusion, House 
defects, Convolutional Neural Network 

I. INTRODUCTION 

Long-term water leaks in houses can cause damage to the 
structural integrity, particularly in the case of wooden 
structures or certain types of building materials. Damp 
environments provide ideal conditions for the growth of mold 
and fungi. These organisms not only damage the interior of 
houses but can also pose health threats to the occupants, 
especially those with respiratory issues or allergies. 
Furthermore, severe cases can lead to significant safety hazards, 
including risks of electric shock and fire. To detect the damage 
in houses, thermal imaging cameras are used. In recent years, 
artificial intelligence has developed rapidly[1], and deep neural 
networks can analyze such thermal images. This non-
destructive testing, based on infrared thermography, utilizes the 
physical property differences between materials. By examining 
the infrared wave field emitted by objects, the resulting thermal 
images can conveniently identify defects in building structures. 

Deep neural networks are frequently utilized by researchers 
in areas such as defect detection, where these methods can 
bring industries highly efficient detection speeds and 
outstanding quality. The advent of CNN networks has 
accelerated the implementation of application projects [2] [3] 
[4]. However, these methods are unable to precisely locate 
defects, and the enhancement of accuracy is achieved by 
increasing the size of CNNs, implying that the time complexity 
of state-of-the-art CNN architectures is becoming increasingly 
large. These limitations have spurred the development of some 
more effective end-to-end networks. 

In this article, we introduce a new network model for 
semantic segmentation, which integrates RGB images with 
thermal imaging to achieve robust and accurate semantic 
segmentation in architectural water seepage defect scenarios. 
Our primary work focuses on enhancing the Multi-spectral 
Fusion 

Networks (MFNet) framework, employing AIC-AM that 
dynamically concentrates on pertinent features within both 
image modalities, highlighting areas with more pronounced 
defects. We have also maintained the encoder-decoder 
architecture [5]. Our main contributions are as follows: 

1)We have created a semantic segmentation dataset for
house water seepage defects and developed a novel deep neural 
network that integrates RGB images and infrared images for 
scenarios involving house water seepage defects. 

2)We propose an improved loss function and AIC-AM, and
our experiments demonstrate the effectiveness of our approach. 

3)Comparative analyses with existing network models
show that our network exhibits superior performance. 

2024 7th International Conference on Advanced Algorithms and Control Engineering (ICAACE)

979-8-3503-6144-5/24/$31.00 ©2024 IEEE 438

20
24

 7
th

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 A

dv
an

ce
d 

Al
go

rit
hm

s a
nd

 C
on

tr
ol

 E
ng

in
ee

rin
g 

(IC
AA

CE
) |

 9
79

-8
-3

50
3-

61
44

-5
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
IC

AA
CE

61
20

6.
20

24
.1

05
48

98
1

Authorized licensed use limited to: GUILIN UNIVERSITY OF ELECTRONIC TECHNOLOGY. Downloaded on July 07,2024 at 15:30:41 UTC from IEEE Xplore.  Restrictions apply. 



II. RELATED WORK

In recent years, Zeng et al. [6] introduced an enhanced 
multiscale feature fusion method that improves the 
performance of small object detection. Yu et al. [7] proposed 
an efficient scale-aware network (ES-Net) to improve the effect 
of defect detection. These methods utilize object detection 
techniques to categorize defects. They are sensitive to data 
variations, and a single image cannot provide a deep analysis of 
defects. Researchers have proposed numerous network fusions 
to compensate for the lack of texture detail in RGB images. 
PIAFusion introduced a Comprehensive Mobility Discharge 
Assessment Framework (CMDAF) and a mid-way fusion 
strategy to integrate complementary information. CUFD [8] 
employed dual encoder-decoder networks to decompose the 
feature maps of infrared and visible light images into common 
and unique components. 

Recent researchers have begun to use RGB images and 
infrared images as inputs for semantic segmentation networks. 
Pozzer et al. [9] utilized various deep neural network models to 
detect primary concrete anomalies in thermal and regular 
images, including defects such as spalling, cracks, and patches. 
MFNet [10] introduced a novel convolutional neural network 
architecture for semantic segmentation in multispectral scenes, 
considering the balance between performance and time 
consumption. RTFNet [11] demonstrates that utilizing thermal 
information can enhance semantic segmentation performance. 

III. NETWORK FRAMEWORK

This section introduces our CNN network architecture for 
semantic segmentation, SSA-ECNet, which includes an 
enhanced cross-attention mechanism framework and a novel 
loss function we propose. 

A. Network Structure

Figure 1.  The diagram of the enhanced SSA-ECNet architecture, based on 
the MFNet [10], is presented. Multispectral images are partitioned into RGB 

and infrared images, serving as inputs, and segmentation images are produced 
as outputs. The mini-Inception blocks and shortcut connection blocks 

maintain the structural integrity of MFNet. We enhance the model's feature 
representation capability in both channels and spatial dimensions by 

incorporating an improved attention mechanism layer in Fig.3. 

Our network framework is illustrated in Fig.1, where SSA-
ECNet employs an encoder-decoder architecture. We have 
designed two encoders to extract features from RGB images 
and infrared images, respectively. The architectures of these 

encoders are identical, with the only difference being the 
number of input and output channels in the convolutional 
layers. 

In the later stages of the encoder, we have incorporated the 
'mini-inception' block proposed by MFNet, which utilizes 
dilated convolutions. We employ a 'shortcut block' in Fig.2 and 
then pass the upsampled feature maps through convolutional 
layers to generate dense feature maps. Batch normalization is 
applied after each convolutional layer. Before the third pooling 
layer in the encoding process, we integrate AIC-AM, as shown 
in Fig.3. Before the third upsampling in the decoder, we also 
introduce this mechanism. 

Figure 2.  The diagram of the proposed SSA-ECNet architecture is shown. 
Multispectral images are split into RGB images and infrared images as inputs, 

and segmentation images are produced as outputs. The mini-inception and 
shortcut blocks still adhere to the structure of MFNet. In Fig.3, we illustrate 

the Attention layer introduced in our work. 

B. A New Loss Function
In this section, we present a novel loss function that

enhances the traditional Dice loss [12], by introducing category 
weights. The formula is depicted as follows (1): 

2 2
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iP  and iT  represent the binary values of predicted and true 
labels, respectively. ε  is a small constant introduced to prevent 
the denominator from being zero, thereby avoiding numerical 
stability issues. The conventional Dice loss function is suitable 
for situations with imbalanced pixel quantities and smaller 
target objects. It is more applicable to image segmentation 
tasks than the traditional cross-entropy loss function. However, 
due to its lack of consideration for distinctions between 
categories, it struggles to effectively differentiate between 
similar pixel values. 

Additionally, we place a significant emphasis on the 
accuracy of segmentation edges, a critical factor for overall 
performance. The implementation of a dynamic smooth term 
allows for the adaptive adjustment of the smoothing coefficient, 
catering to targets of varying sizes. Lastly, the integration of 

2,1L -norm promotes row-level sparsity within the model 
parameters, mitigating overfitting and augmenting the model's 
generalization capability(2). 
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In this improved Dice loss function, i i iV W E= ⋅ , iW  denotes 
the class weight at position i , utilized to address class 
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imbalance issues. iE  is the edge weight, emphasizing the 
significance of image edges. We have opted to abandon ε  as 
the smoothing coefficient. Instead, the smooth term S  is 
defined as S smooth N= ⋅ , where smooth  is a smoothing 
parameter, and N  is the total number of elements in the target 
values. 2,1λ  is the coefficient for the 2,1L  regularization, 
controlling the strength of regularization. The 2,1L  
regularization term, defined as 2

2,1 ij
i j

Θ = Θ∑ ∑‖ ‖ , encourages 

row-level sparsity in the model parameters, where Θ  
represents the parameters of the model. 

C. A Improve Cross-Attention Mechanism 

 
Figure 3.  Incorporating A Improve Cross-Attention Mechanism (AIC-AM) 
enables the generation of the final attention weight maps. Within the encoder, 
RGB images are employed as input, while in the decoder, the input transitions 

to infrared images. 

The framework for enhancing the Cross-Attention 
Mechanism, as illustrated in Fig.3, draws inspiration from the 
Convolutional Block Attention Module (CBAM) proposed by 
Woo et al. [13], which is utilized to integrate deep features of 
different modal images. Diverging from CBAM, we introduce 
the use of convolutional operations to replace the originally 
shared multi-layer perceptron (MLP), and connection 
operations replace the addition layer. This modification is 
motivated by the work of Wang et al. [14]. We present a novel 
parallel attention framework, which is also designed to be 
readily applicable as a plug-and-play module. 

In the channel domain, initially, through the mean pooling 
layer, these vectors are then passed through two convolutional 
layers and a PReLU activation layer, connected, and fed into a 
convolutional layer to generate channel attention vectors. In the 
spatial domain, we obtain the initial spatial attention matrices 
through maximum and average pooling operations. These 
matrices are then concatenated into the convolutional layer to 
produce spatial attention matrices. 

Subsequently, we element-wise multiply the channel 
attention vectors with the spatial attention matrices to obtain 

attention maps for the initial fused features. Next, we normalize 
these attention maps by applying the Sigmoid activation 
function to generate corresponding attention weights. 

IV.  EXPERIMENTAL RESULTS AND DISCUSSIONS 

A. The Dataset 
In this section, we evaluate our proposed SSA-ECNet by 

training and predicting on our custom dataset. We compare it 
with networks proposed in recent years. 

 
Figure 4.  The top row contains four images in RGB format, whereas the 

bottom row has four images captured in the infrared spectrum. The infrared 
images with a reddish tint were taken in the summer, while those with a 

greenish tint were obtained in the autumn. 

The data in Fig.4 are collected from rural houses built in the 
vicinity of cities for more than a decade. Due to their long 
construction history and lack of regular maintenance, such 
houses are prone to defects such as water leakage. The FLIR 
ONE PRO thermal imaging device was utilized for data 
collection, resulting in a total of 400 images. The image 
resolution on the dataset is 640 × 480. 

B. Training Details 
We use PyTorch 1.3.1, and our SSA-ECNet is trained on a 

machine equipped with an Intel 2.6GHz i5 CPU and an 
NVIDIA 4090 GPU running the Ubuntu operating system. The 
training involves the utilization of the simulated annealing 
algorithm with an initial temperature of 0.01 degrees, a final 
temperature of 0.0001 degrees, and a cooling rate of 0.9. We 
employ the Stochastic Gradient Descent (SGD) optimizer. 
Additionally, flip augmentation techniques are applied to 
enhance the training dataset. The network is trained until 
convergence, and no further reduction in loss is observed at the 
point of convergence. 

C. Evaluation Metrics 
We employ quantitative assessments for the semantic 

segmentation performance using two metrics. The second is the 
Intersection over Union (IoU) for each class (3). The first is the 
accuracy (Acc) for each class (4), also known as recall. The 
average values for all classes for both metrics are denoted as 
mIoU and mAcc, respectively. Their computation formulas are 
as follows: 
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True Positive (TP) signifies the number of accurately 
predicted pixels or instances belonging to a specific class. False 
Negative (FN) denotes the count of pixels or instances 
genuinely belonging to a class but incorrectly predicted 
otherwise. False Positive (FP) represents the number of pixels 
or instances inaccurately predicted as belonging to a class when 
they do not. 

D. Comparative Results
In this section, we compare SSA-ECNet with UNet[15],

PSPNet[16], HRNet[17], SegNet, RTFNet, and MFNet. All 
networks have been trained until their loss converges to that of 
our SSA-ECNet. The result is in Table 1. 

TABLE I. TEST SET PREDICTION RESULTS 

Model mAcc(%) mIou(%) 
SegNet 83.6 72.6 
UNet 81.2 73.7 
PSPNet 85.7 77.5 
HRNet 86.9 74.3 
RTFNet 88.9 79.7 
MFNet 93.1 87.8 
SSA-ECNet 96.8 89.6 

V. CONCLUSIONS

In this paper, we present a novel CNN framework designed 
for the semantic segmentation of RGB thermal images to 
identify house leak defects. We introduce a new multispectral 
dataset with pixel-level annotations to facilitate the evaluation 
of segmentation performance. Our proposed method 
demonstrates higher precision when compared to state-of-the-
art segmentation approaches. We devised a novel multimodal 
cross-attention mechanism to effectively extract deep features 
from both RGB images and infrared images. Additionally, we 
designed a more efficient loss function that incorporates edge 
pixel considerations. The improved smoothness term aids in 
achieving a better balance between small and large objects, 
enhancing overall segmentation performance. The utilization of 
the 2,1L -norm further reinforces the robustness of the model. 
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